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ABSTRACT

Liquid in a partially filled container has a strong tendency to
"slosh' about even under the slightest disturbance, The mathematical
theory for this liquid motion is presented for cylindrical tanks with
ring sector cross sections. It is based on linearized potential
theory treating the liquid as incompressible, irrotational and non-
viscous, Natural frequencies, surface displacement, pressure and
velocity distribution in the containers, as well as fluid forces and
moments, are presented for various forced vibrations.
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GEORGE C. MARSHALL SPACE FLIGHT CENTER

MTP-AERO-62-1

THEORY OF FLUID OSCILLATIONS IN PARTIALLY
FILLED CYLINDRICAL CONTAINERS

by Helmut F. Bauer
SUMMARY

Liquid in a partially filled container has a strong tendency to
"slosh" about even under the slightest disturbance, The mathematical
theory for this liquid motion is presented for cylindrical tanks with
ring sector cross sections., It is based on linearized potential
theory treating the liquid as incompressible, irrotational and non-
viscous, Natural frequencies, surface displacement, pressure and
velocity distribution in the containers, as well as fluid forces and
moments, are presented for various forced vibrations.

I. INTRODUCTION

Fuel sloshing in the tanks of a space vehicle or missile will affect
the performance and stability of the vehicle, leading in extreme cases

BEFORE FIRST RESONANCE

Figure 1, Free Fluid Surface of the Liquid in a Cylindrical
Container with Circular and Annular Cross Section
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Figure 2. Free Fluid Surface of the Liquid in a Circular Cylindrical
Quarter Tank

to catastrophe, Since more than 907% of the total weight of the vehicle
at launch is liquid propellant, liquid sloshing represents a major item
requiring special attention even in the preliminary design stage of
space vehicles., The tendency toward a continuous increase in size of
modern space vehicles makes an investigation of this kind even mandatory. |
If the natural frequencies of the propellant in the tanks are close to
the control frequency of the vehicle, the lower modes of the elastic
vibration - say the fundamental body=-bending modes = or to the natural
frequency of the control sensor, the problem obviously becomes acute,
Moving propellant exerts forces and moments on the vehicle, which may
saturate the control system and thus lead to failure, It is for this
reason that, for a realistic dynamic stability and control analysis, the
effect of the oscillating propellant has to be considered, "Sloshing"
is the term usually applied to a type of liquid motion resulting prim-
arily from translation, pitching, or bending motions of the tamnk, The
free oscillation of a liquid with a free fluid surface as well as the
response of that liquid due to these excitations will be treated,

II. DERIVATION OF BASIC EQUATIONS

Since cylindrical tanks with circular sector cross sections are
universally used, they are most important. An exact solution of the
problem of liquid oscillation with a free fluid surface in a container




is practically impossible., For simplification, the liquid is assumed

to be incompressible, frictionless, and irrotational. These assumptions
are justified since the results describe the dynamic behavior of the
liquid very well, as long as the forcing frequency is not too close

to the natural frequencies of the liquid system.

7 The equation of motion of a liquid particle is obtained from the
equation of Newton:

av 1
—4 - —
K grad P (1)

- .
where K represents the exterior force per unit mass. The acceleration

of a liquid particle is

—_
d" (gt+?- grad) ?=g"—t+%grad 72 - [Vxecurl vl (2)

—_
and it is with the acceleration vector g as the exterior force per
unit mass

1 -2 - -, 1 -
+ > grad v - [v x curl v] +-E grad p = g. (3)

O/l g/l
N

These equations represent a system of three non-l}near partial
differential equations in which the five values v' = {u,v,w}, p and p

are unknown. Since the liquid is considered to be incompressible, the
mass density is constant_and known. We need only four equations to
solve the four unknowns v and p. A fourth partial differential equation
can be obtained by the principle of mass conservation (continuity
equation).

‘The mass flow through a closed surface without sinks and sources
is zero. This can be expressed by the following expression

ffpvvn ds= 0
S

with Gauss Theorem

ffp v ds =Mdiv (o) dv
S '



Figure 3. Mass Flow Through a Closed Surface

we obtain for the previous integral

fffdiv (@ av = 0
v

for any arbitrary volume. From this we conclude that everywhere
div(pvg = 0, Since the mass density is considered to be constant, we
obtain the continuity equation

div (v) = 0 (4)

The equations (3) and (4) are with given boundary and initial conditions
sufficient to determine the velocity components u, Vv, and w and the
pressure p-uniquely.

Assuming the flow to be irrotational

—_
curl v=20




the flow field can (due to the identity curl grad ¢ = 9) be represented
by a velocity potential ¢. From this velocity field, v can be obtained
as '
—_
v = grad ¢

From this equation and the continuity equation, it can be seen that
the velocity potential is a solution of the Laplace equation,

M =0 (5)

This result represents a great simplification in the treatment of the
problem since the velocity field can be obtained by one function ¢
only, which satifies a linear partial differential equation. Further
simplification, which follows from the assumption of the irrotational
flow, can be obtained from equation (3) which can be written in the
following form:

2
grad (%%) + % grad v o+ grad (%—) = - pgrad (gz) (3a)

in which the force per unit mass is in negative z direction and the
density is considered to be constant. The integration of this equation
leads to the instationary Bernoulli equation of the form

b 1L 2. -
Sc F2V t, te=0. (6)

The potential equation (5) and the Bernoulli equation (6) substitute

the continuity equation (4) and the equation of motion (3). Once the
potential ¢ is obtained, all other values can be determined with it.

The velocity distribution is obtained by differentiation with respect to
the spacial coordinates of the solution of the differential equation (5).
The pressure p is obtained from equation (6). TFor a fixed or movable
boundary T (x,y,z,t) = 0, the boundary conditions can be obtained by
setting the normal velocity of the liquid at the boundary equal to the
normal velocity of the boundary itself Vo= Ve This results in

N
dr _3dr, 3, . dT . 3T _
dt St + u % + v Sy + w ol 0
(7)
dT

) = _
or (gz + Ve grad) T=0

dt



For fixed time-independent container walls, the boundary condition
reads

O/‘O/
=3 (=]
L]

o]

at T.

Another boundary with the treatment of liquid oscillations in a partially
filled container is that at the free fluid surface. If the equation of
such a surface on which the pressure p is given is described by

= C (X:Y:t),
then it is for a fluid particle at the surface
T=F=2z=- ¢ (X,y,t) =0

.and it is with (T)

dF aF JF OF oF
TtV TV TVaET O

and

< =

] ]
|/ (o4 (04
i Ris

s
"
g4

at the free surface

¢
a‘b.i é_ 9% _ o
Sf 5% ox T oy SL dz 0. (8)

Furthermore, we obtain with the Bernoulli equation (6) the pressure
at the free surface :

S 36,2 2 2
p = af 1S + D st )



From this we conclude for the pressure p = 0 that

100 _1 092
(--28- LD &+ @ (10)

This is the boundary condition that is obtained with Bernoulli's
equation (dynamic condition), while equation (8) represents a kinematic
condition. Assuming small velocities and small free surface displace-
ments and derivatives of those, the velocity potential ® and the free
surface displacement { can be represented as series -

0 (x,y,z,t) = Z ¢%J (11)
_ =
and
\ A ’
g (X’Y:t) _y §7\€ (12)
A=0

where ¢ is a small value.

From this we conclude that ®% is a solution of the Laplace equation

Neglecting second order and higher terms we obtain from equation (10)
with equations (11) and (12), that go = 0 and

1 %0
SRS T atz=t, =

—

and from equation (8) we obtain

ot _ o9
ot  Jz

Elimination of { results in the boundary condition for the free fluid
surface:



o, b0 _
- + g S, 0 (13)

The displacement of the free fluid surface is

N RPEe1
£=- g G z=0° (14)

-

We thus obtain, for the solutions of the incompressible, irrotational

and frictionless liquid in a stationary container with free fluid surface,

the following equations:

AD =0

%% =0 at the tank walls ‘ (15)

2
§;2.+ g o _ 0 at the free fluid surface.
ot2 z

The last boundary condition is the only one that has been linearized.
For moving containers the basic equations can also be derived in a
similar way. Here the boundary conditions of the container walls must
also be linearized., The solution of the Laplace equation consists of
the potential ¢o of the motion of the infinitely long container (which
is assumed to be small) and the disturbance potential ¥ of the motion
of the liquid. The velocity potential ¢ can therefore be presented as

® = ¢, + V. (16)

—

The disturbance potential  is due to small translational and rotational

container motions which disturb the free fluid surface. We obtain,
therefore, the equations for solution of the liquid with a free fluid
surface due to forced oscillations of the container.

AD =0

1)
(B—E) =

at the container wall

- (17)

= normal velocity at the container wall

-



2
Q;Q_+ g %% = 0 at the free fluid surface
ot®

- III. FREE OSCILLATIONS

The flow field of a liquid, with free fluid surface in a circular

cylindrical ring sector tank with flat tank bottom having a vertex
angle 270, is obtained from solution of the Laplace equation with the

appropriate linearized boundary conditiomns.

Z
e
iwt
Xo€
— -
el i
Figure 4. Tank Geometry

éﬂ =0 at the tank bottom z = - h




1]
o

at the circular cylindrical tank walls r = a,b,.

(18)

R o= (oY [ %
g

=0 at the sector walls ¢ = 0, 2T

[

+ g s = 0 at the free fluid surface 2z =0
atg aZ

With Bernoullis separation method in which the function ¥ (r,p,z,t) is
written as a product of functions which depend only on one independent
variable

V=R (£) g (0) 2 (2) et (19)

the solution of the Laplace equation can be found. One has to take
care in the choice of the separation constants and their signs in
order to obtain solutions which describe the physics of the problem.,

Vo= eiwt {G; cos vyp+ Co sinvp)} [{C3 coshAz + C4 sinhAz j
i - (20)
(CsJ, (Ar) + Cg ¥, (Ar)} + (C; z + Cs) (Co ¥’ + Cio MERAY

The velocity potential which satisfies the boundary conditions of the
container wall is

cos b [5_ 2+ D]

. ) mn ‘a
. )t
v (_r—,CP,Z,t) =Z Z Amn 2lwmn cos (I;_'& ®) " *
m n cos h [¢_ =]
mn a
c, (3 (21)
20

where the constants A n are unknown and can be obtained from the
initial conditions.,

It is r r
In (¢, 2 Yo ¢ 2
r, _ 20 2a
CE (émn a) - (22)
20 JT'L_ (gmn) Ym_ (&mn)




The values gmn are the positive

1 / ‘
Tn (g Q)
_ 20
B _ (¢) =
2 Jm_ (€ )
20

in which k = b/a represents the
container walls, With the free

11

roots of the equation

v !
m

20

(£

mn

(23)

Yl
m

20

(¢ )

mn

diameter ratio of the inner and outer
fluid surface condition, one obtains

the natural frequency of the liquid as (Eigen values)

b,

w2 =8¢  tanh (¢
a °mn mn a

‘mn

(28)

m,n = 0,1,2,00000

It can be seen from the frequency equation that the natural
frequency of the propellant increases with the square root of the-

longitudinal acceleration g and

square root of the tank diameter.

is indirectly proportional to the
For constant longitudinal

accelerations and tank dimensions, most of the change in frequency
occurs for shallow propellant depths, i.e., for a fluid height of

less than one tank diameter for
modes,

frequency of the propellant versus flight time increases.

the first mode and even less for higher

Due to increasing longitudinal acceleration, the natural

Only during

burn out does the fluid height influence overcome the influence of the

acceleraqiqn g and decrease the

frequency again.,

............... keo
fn ———ks0.2 L] '%'
/. o en
o7 —_— k=08
e e
“"?’/
o II
Q: ! n=2
I 2 e ne2
e n=2
I
Q3 L
n=|
URRO SR N
a2id— s - —
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Y| /4
./
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Figure 5.

Natural Frequencies of a Liquid in a Cylindrical Container
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Figure 6. Natural Frequency of Propellant versus Flight Time
IV. FORCED OSCILLATIONS

The flow field of the liquid with the free fluid surface in a
circular cylindrical ring sector with a flat bottom, due to forced
oscillation of the tamnk, can again be obtained from the solution of
the Laplace equation and the appropriate linearized boundary conditions.
In these cases, not only the free fluid surface will be linearized, but
also the tank wall conditions have to be presented in a linearized form.

A. Translational Oscillation

For forced oscillations of the tank in the direction of the x-axis,
the following set of equations has to be solved:

A =0

Jol
Sz

0 for z = - h
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%-j%g =0 for p = 0
- (25)
%§§=-in0 et sin 2m for ¢ = 2T
o0 _ i
vy = lwxy eVt cos O for r=a, b
2
%:%+gg—’-;=o for z = 0
\ e
By transformation
= {¥ + iwxor cos @} eiwt
the equation can be written in the form
%% =0 for r =a, b
%% =0 for z = =« h
(25a)
%._g%:o - for ¢ = 0, 2T ‘
g %%-- w? ¥ = iwsx0 r cos ¢ for z = 0.

The solution of the Laplace equation is, with respect to the boundary
conditions at the tank walls, given by [(See (21)]

b m Y cosh [gmn (§ + l_al.)]
¥ (x59,2) =Z Z o cos Goo) ¢ (&, D) n (26)
=0 =0 > cosh [gmn ;] ,

"With the free fluid surface condition at z = 0, we obtain

}; E: A cos (—— p) C € 3) [E € n tanh (émn %) - w2 = iwsrxo cos @
n=0 m=0 EE
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in which
2 . & h
“on a §'rnn tanh (gmn a)

represents the square of the natural circular frequency of the system.

To determine the unknown coefficients A ., one has to expand at the right
hand side of the previous equation cos ¢ into a Fourier series and ¥ into
a Bessel-Fourier series, The cos ¢ can be represented as

0
m
cos O =Z a  cos (E& ®)
m=0

with
- sin 27w
°  2m
m
2 = 4o (=1). sin 2T
m T (M2 - 403)

The radius r should be represented in a series of the form

. .
T

r=z bmn CE‘_ (gmn ;) m=0,1,2,0000s

n=0 20

in which the coefficients are given by
~a

r2 ¢, (¢ ) dr
mn N L]
a iy
2 r
bf T Cm—_ (émn a) dr
20

The evagluation of this Bessel integral results in
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a
2
2 r = 2 - k2 A2
bfrcg_(gmna)dr P oG gy

20 : gmn 20
2 2

- 2.2 42 - c2 (/kgmn)]

8 e, &ty 3

a m_
b\jp r2 c (¢ EO dr = a® N, 2a (e ).

mn a mn
20 ’

No is represented in the appendix for integer and non-integer values of
m/20. The coefficients A.mn are therefore

i a_ b X
mmno

(w Jw2-= 1)

A =
mn

and the velocity potential for translatory excitation of the container
in the direction of the x=axis is

a b G (¢ T) cof (53 P
—_— 1 y;

0 00 m mn m
% (r,p,z,t) inx e {r cos @-+§z }: — 20
m=0 n=0 —=-1)
w2
h
cosh [t (3 + )]
mn ‘a a }e (27)

cosh ( En 2)

The first expression in front of the double summation satisfies the
boundary conditions at the tank walls while the terms in the double
summation vanish at the tank walls. The term r cos ¢, together with

the double summation, satisfies the free boundary condition if one
considers the results for the natural frequencies and the representation
of cos @ as Fourier series and of r as Bessel=Fourier series, With this
obtained velocity potential, one can determine the free surface displace=-
ment, the pressure and velocity distribution, and the forces and moments
of the liquid by differentiation and integration with respect to the time
and spacial coordinates, The free surface displacement of the liquid
which is measured from its undisturbed position is




16

s

§=9— {rcoscp+zz——z—— Ct_n_(gn;)cos( o) 3.
m=0 n=0 (——— -1) 20
02

The pressure distribution at a depth -z in the tank is

oL
P=-p3J - r8z
i
. 2 a_b__ cosh [t (£,+ l—1-)]
o iwt : ‘ m mn mn ‘a  a
P=puwx e [r cos @-+§Z ;ﬂ =z
=0 = on h
m—O‘n—O ( 1) cosh (¢ a)

w2

c (¢ =) cos ( 5 @1 -esz

m mn a

From the pressure distribution, we obtain by integration the components

(28)

(29)

of the liquid forces and moments, the component of the force in x direction

is
20 o a o
/ . !
Fx —\jr JF (a P, - b pb) cos @d ¢ dz -KJF prquﬂa sin 2nx dr dz (30)
¢ =-h b =-h _—
The first term represents the force due to the pressure components at the
circular walls, while the second integral is the force component due to
the pressure component at the sector-wall ¢ = 2TC.
This is with the mass of liquid m = pma a2(1 -k h
o] (22} |
a b sin 2n . tanh (¢ <)
F. = mw® X et [1 + }7 LU — . mna .
X - w2 £ h
m=0 n=0 noa (1 = k2) (——— - 1) mn a
— w2 L
,31)
) 4o 2 (
(N 207 (e ) + ( ke (ke )]

(m2 - 40!2) 1§mn =

2¢
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the force component in y direction is with the first integral as the force
component due to the pressure at the circular walls, the integral due to
the pressure at the sector-wall ¢ = 0 and the third integral due to the
pressure at the sector-wall ¢ = 2sQ

25 ©
ff (ap -bpb) s:.n(pdcpdz-ffp odrdz-l-

T Ta (32)

f f Pq>=2na cos %la.drdz
b =h -

which finally can be represented as

=

gL L [1 - (-D¥ cos 2] tamh (¢ 7)
Fy = - m? e’ Z Z - ™ .
m=0 n=0 naa 1 -k gmn a
m_ ' | (33)
0,2 (g + —2E— G ke (g, )
m® - 40°) mn 25
Here N is
o
m a -
Gg -1 L
Y 20[) o) = a f Cx_n_ o a) 9r
b 20

It can be seen that the term in front of the double summation in the x-
component of the force represents nothing but the inertial force. The
moments of the liquid with respect to the point (0,0,-h/2) are given by

2% o 22 a
= - h 2 -
My—f/f(apa bpb) (2+z) coscpdcpdz+f fpcr cos od @ dr
o =h o b

: (34)
. h
-f f pqum sin %lo: (2 + z) drdz
b ~h —_ :

where P, represents the bottom pressure,
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The first integral represents the moment due to the pressure at the
circular walls, while the second integral is nothing but the bottom
pressure's contribution to the moment. The third integral finally is
the moment due to the pressure of the sector-wall ¢ = 2nC,

—

Similarly, we obtain for the moment about the x-axis

20 © 20 a
h , .
Mx = -U[V-Jf (apa - bpb) (§-+ z) sin od ¢ dz -L[» Jf P, r2 sin ¢d @ dr +
o =h o) b
- a o ' T a o (35)
- b . h ,
+B/\ d/ (2 + z) pcp=o drdz -J[ ¥f (2 + z) p¢=2ﬂacos gfq drdz
=h b -

Where M_ represents the moment about an axis passing through the point
(0,0,-h¥2) parallel to the y-axis, while M, represents the moment about
a straight line parallel to the x-axis through the same point.

The moments are given by

i 2 .
My = mw2a x R [Sl_igk_l (1 + sin 2xQ cos ZFob +
4 =

o 250t
a -
0 oo m+1
. (-1) a b
ryp2e ) —mm (reamh (e B +
- me0n=0 (—- -1 1.k e,
W
m
b2 — Ly B )+ (R
e 5 cosh (& ) (@? - 40®) tmn
807 £2 NQ(I”ZE&) (¢ )
-kC (e k)] + = = 1+
. m h h
201 (m® - 40®) (¢ ) cosh € . 2
- 3 1
+mg & (=K sin 20 (36)

(1 -k @




19

_ ivt (1 + k) sin® 2 1 NN
M o= - wax e | s B Z“OTEQ/-Z“O‘&X’Z
a — — m=0 n=0
b [1 -~ (-1)" cos 2m]
n {[tanh (t —") + 2 h ( 1 h - 1)]
> mn a a
w2 . En a cosh (gmn a)
-1 a- g,
=
[NO(Za (e + 40‘2 (ng -k (&, k)] +
- 407) b (37)
04
(—-
807 §§n N» 20 (& ) a [l - cos 2mx] (1 - k%)
+ }1 + mg '5 o
- a0 (¢ D) cosh (¢ S

The last term in these expressions represents the moment of the undisturbed
liquid about the point (0,0,-h/2). The velocity distribution is obtained
by differentiating the velocity potential with respect to the proper
coordinates and is:

h
n cosh [gmn : ;?]

_ 9% _
u =55 ° iw X, et [cos o+

o m=0

ﬂ[\v/]3

0 (—-—- 1) cosh (&_ h) a

w2
cé_ Eon 2 %) cos ( 5 1
2
=l§i=- . <.S1 hd m mn (ZC) cosh [§ _)]
u(p T 50 iw [51n ¢-+ZL j;
I m=0 n=0 (—-z - 1) cosh (¢__ a)

r
Ca Can 2
20

sin ( 5 91 ' (38)




20

e

1l
Qs
\ Nle

[}

.

[

N

(]

-

£

t
%Mg
o ~

) h
sinh [gmn (i + ;)]

yw 3
m mn mn
2
A w
n=0

w

(¢ Z) cos ( ®)

mn a

a (—EE - 1) cosh (gmn a)

The velocity distribution in the tank can be obtained from these by
That is, for the radial
velocity component u,., we have to omit the term cos ¢, while for the
angular velocity component u,, the term sin ¢ is left out. These terms
represent with the coefficients in front of the parentheses nothing but

omitting

the tank motion itself,

along the

B. Rotat

the first term in the parentheses.

Similar results can be obtained for an excitation

y-axis. In this case, sin ¢ appears and has to be expanded into
Fourier series.

ional Oscillations

For rotational excitation of the container about one of the coordinate
axes, which is now taken at the center of the sector axis in the middle
between tank bottom and undisturbed fluid surface, the flow field can be
obtained from the solution of the Laplace equation and the appropriate

linearized boundary conditions,

The boundary conditions for forced

rotational oscillations of the container about the y-axis are in linearized

form

S04

14
[

/
o

H =

R ]
gy &l

2

Q/
©

-+

where eo

- iw 9 elwt zZ COs @ at
iw 6, et r cos 0] at
=0 at
i
= iw o e wt z sin 2xC at
o ‘—,
s
g 55 =0 at

the

the

the

the

the

tank walls (r = a,b)

tank bottom (z = = %)

(39)
tank sector wall (¢ = 0)
tank sector wall (9 = 21Q)
free fluid surface (z = + %)

is the amplitude of the exciting function. With the transformation:
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g=[¥ - iwrz 8, €08 ] eiwtr

the boundary conditions at the tank sidewalls (r = a,b,p = 0,2x0) can be
made homogeneous. Solving now the Laplace equation -

Ay =0, -

a solution can be found which satisfies the homogeneous boundary conditions
at those walls. The unknown coefficient Ay, and By, in this solution can
be obtained by satisfying the remaining two boundary conditions at the
tank bottom and at the free fluid surface, making use of the previous
series expansion for cos ¢, sin ¢ and r. From this the velocity potential
can finally be obtained as

© o
. iwt z
0] (r,CP,Z,t) = jiw e 90 [-rz cos ¢ + z z (Amn cosh (gmn ;) +
m=0 n=

. (40)
+ B sioh (¢ ) CEL (3 ;) cos ( 5 P 1]
2x
where
ab
A = Lo [ sinh (——) - (-—+—-g—) cosh (-—-——)] a
mn 2 g
wmn mn aw
(:u-z— - 1) cosh (¢ a)
ab £ 3
By = (B - 3 sinh (P2 D) - T cosh (D] a,
(A)mn aw mn
(;—2— - 1) cosh (Emn a)

' The expression in front of the double summation satisfies the boundary
conditions at the container side walls while the terms under the double
summation vanish at these boundary conditions. The double summation,
‘together with the terms in front of it, satisfies the conditions at the
tank bottom and free fluid surface, The free fluid surface displacement
of the liquid forces and moments, the velocity, and pressure distri=-
bution can be obtained from the velocity potential,

|
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C. Roll Oscillations

For the design of the roll control systems, the knowledge of the
liquid oscillations in ¢ direction is very important, For forced
excitation of the container about its sector axis (z axis) with the
amplitude P » the flow field can again be obtained from the solution
of the Laplace equation with appropriate boundary conditions. The origin
of the coordinate system again is placed in the undisturbed free fluid
surface with the z axis being the sector axis and pointing out of the
liquid. The boundary conditions are:

gf’: 0 at the container walls (r = a,b)
90 _ 0 : =
Sz at the container walls (z = - h)
- . (41)
% %ﬁif iwr @ elwt at the tank sector walls (¢ = 0,2§a)
oI) o0 i
Sc2 + g S - 0 at the free fluid surface (z = 0)
— —

Since the boundary conditions cannot be satisfied by one potential
function as in the previous cases, one represents the velocity potential ¢
as the sum of two potentials G = G (r,p) and F = F (r,0,2)

® (r,0,z,t) = [G (r,9) + F (r,9,2)] eimt

Both functions satisfy the Laplace equation. The function G (r,Q) is
determined such that the boundary conditions at the tank walls r = a,b

and ¢ = 0,270 are satisfied. This represents a solution for an infinitely
long tank performing roll oscillations, With the function F (r,9,2),

the boundary conditions at the tank bottom and at the free fluid surface
are satisfied., The boundary conditions for the function G are

%g'= 0 at the tank walls (r = a,b)

c (42)
S0 = iw @ r? at the sector walls (¢ = 0,2nQ)

——"

Those of the function F are given by:

%% =0 at the tank side walls (r = a,b)
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i 0 _at the sector wall (¢ = 0,2x0) (43)
oF weF = w36 at the free fluid surface (z = 0)

g 3z

OF

5 = 0 at the tank bottom (z = =~ h)

The solution of the Laplace equation
NG =0
:an be obtained with the transformation
G (r,9) = iw ¢, % (p -~ 7¥) + ¥ (r,9)
—

by which the second boundary conditions will be made homogeneous).

‘he first term in G(r,p) represents the potential 2, of the rigid infinite
'ylinder,

g

From the solution of the thus obtained Poisson equation

ith the boundary conditions

%% = = 2iw @y r (@ —‘fg) for r = a,b
é\k =0 for P = 0 y 20
BCP —

2 obtain the value G = G(x,9).

[ -

The solution which satisfies the.last boundary condition in ¢ is of
1e form

[+

¥ (£,9) = 2 R (r) cos (5= )

=0
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’

Introducing this into the partial differential equation, we finally
obtain an infinite number of ordinary differential equations for the
functions Ry (r). If one expands the function ¢ on the right hand side

into a cos-series

m
¢ - ml==§j p, cos (55 @)
m=0

with the coefficients

p, =0

Pom = 0

T -
2m"1 - (21'[1 - 1)2

these differential equations are

d2 R, dR
tT dr 0

dr?

2
dR2m+—ERA- m° R =0

dr2 r dr O? rg 2m

2 - 2 o ,

a= R, 1 L1 dR, .1 (2o - 1)° Ry 4 ) 32 iw g @

dr2 rodr 4P x2 g (2m - 1)2

for m = 1,2,-ooco

The solution of these are for o # 1/4, 3/4 with the boundary condition

inr

'[%L= - 2 iw ?, rz p, cos (t;—a )]
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R (r) =0
R2m (x) =0 el
, - 2m-1 el A
. o 32 iw ?y oF a {(29_5571 1 -k 2x ) -
Zm-1 x(2m = 1) [(2n - 1)2 - 16 ¢®] ° 2u-1
_~ 20
2m-1  2m-1 -k
2m-1 == ==
ot 2, 20 20 2
- CE) 2a (k== k Zmzlk - 4o (E) ) (44)
i == (2m-1) @
20
1 -k )
finally the solution G (r,¢) is for o # %, %
2m-1
32 iw g 0% a2 G ®
G (r,9) = iw ¢ % (p - =) + ) Z g
} = (w-1) [(2m-1)Z -1607]
2m-1 2m-1 2m-1 2m-1 2m-1
(§)2a (l_kZa )_(%)205 (k2-k2°‘)k2a
( ) )
-k
4oy r,2
"D @) 42

The solution of the equation AF = 0 which satisfies the homogeneous
boundary conditions at the tank walls is

© o h
cosh [& (E + 3]
F (r,9,2) =2 Z Con 08 G5 @) =22 ¢ (¢, D (46)
=0 n=0 cosh (gmn %) 2a

The constants Cmn are obtained with the last boundary condition (43).

Introducing the Fourier series for the function ¢ in the previously
obtained function G (r,p) and satisfying the boundary condition of the
free fluid surface: '
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= w (2T = (02 =
géz wF = w<G at =z 0,

one obtains with the Bessel Fourier series for

o0

& = C,q ( )
a) =) Bm-1,n “2m-1 You-1,na
n=0 2c
0
a.® _ r
= “z Bon-1,n %2m-1 C2n-1,n @
n=0 2x
2m-~1 e}
I, 2o _ L
@ —Z 22m-1,n Com-1 (§2m-1,n 2
n=0 2¢
2m=1 [e<}
a, 2o _ r
(r) -EZ q2m-1,n C2m-l (§2m-1,n a
n=0 2x
/ r
r3 Cop-1 (& =) dr
b o 2m-1,n a -
a . & g2m-1,n
2 L
bh/\ r C2m-1 (§2m-1,n a) dr
20
a
1 T
bf r C2m-1 (§2m-1,n a) dr
20 = 2
= a== h
am~1,n
a r
2 X
b\jp t ng;l (§2m-1,n a) dr
20
fa 21;&1 +1 .
r Com-1 (¢ - =) dr 2m=-1
b 5 2m-1,n a .. 20 ,

2m~-1,n

a
2 r
bf r Copa1 Cope1n 2 9
20
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a 1--—-2a r
bf r -1 Com-1,0@ T 2o
2Q = a 20
a qu-l,n
2 L
bf T o1 Coper,n a) 9F
20
the constant C
mn
C2mn= 0 m=0,1,2,.-0-..
32 iw ¢_ o2 a®
c = 2
Zm-l,n 2 /
w
x (2m-1) [(2m-1)2 - 1667] (=22=Lalk _ gy |
— (.1)2 /
2u-1 , , 2n-1  2m-l
2x 2 plo] 2a
'z&n-l,n (1-k ) -qu-l,n (k= - k ) k
{ Zm-1 N
-k 29
(2m-1)

40 92m-1,n)

Therefore the solution is

2m-1 r
cos ( Q) C (&, _ )
32 iw @o a® @ 2= 20 21;(;1 Zn-l,m &
F (r,p,2) = . zy
2m-1
: z  h Zo- +2
cosh (E’Zm-l,n [a +3 1)) ’ZZm-l,n (1-k ) “42m-1,n"
o
wzz_m-l,n h
—2 - 1) cosh (gzm_l’n PYj
2m-1 2m-1
2
(Pek 2%y K 2 (2m-1)
2m-1 T 4o gzm-l,n ) 47

(1-k 2%
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’

! =
where me-l,n are the roots of CZm-l 0

———

2

The velocity potential is finally expressed by:

m=-1

\ o b cos ( )
B (rp.z,t) = dug, e 2% (D) (9 - m) + }7 20
T = [(2m=1)2 -1607) (2m-1)
2m-1 2m=-1 2m~-1 2m- 2m=-1
+ 2 - Lot
(E) 2 (1-k 2a ) - (E) 200 (k2-k 20 ) k 200 »
[ 2m=-1 " om-1 ( ) ] +
<1 20

z h
cos ( 2a ®) C2m 1 (€2m-1 n a) cosh [52 -1,n (a +3]

szoooo a
_}:Z 20

Wom-1 h
=1 (2m-1) [(2m-1)2 - 1602] [-=2==22 _ 1] cosh (¢2qe1,n 2

n=0
(.02
2m-1 4 2 2m-1 2m-1
_y 2a - 2_, 20 2Q (48)
(Z2m-1,n (1-k ) = gpeyn K ) K _ 2m-1 (]]
2m=~1 4o 2m-1, n:
(1-k 2%

The first term satisfies the boundary condition at the sector walls while
the infinite series vanishes them term by term. At the boundary condition
at the tank walls r = a and r = b, the double summation vanishes, while
the simple summation vanishes together with the first term. Surface
amplitude, liquid forces and moments, velocity distribution, etc., can
be obtained in the same manner as the previous cases by differentiation
integrating. As already mentioned, the results are only wvalid if
a# 1/4 and 3/4, 1In these cases the non-homogeneous part of the
differential equation R_ is in resonance with the Eigen solution for

=1 and m = 2, For a cylindrical container with quarter ring cross
section

2iw Qg
R; (r) = C; r? + D, r 2+ —f;——— r2 1nr
the other solutions of the differential equation in are the sgame,

The integration constants C; and D, can be obtained from the boundary
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conditions in r, For this tank type the velocity potential, the free
fluid surface displacement and the pressure distribution can be obtained
by setting & = 1/4 and by substituting for the term with the index m = 1
in the simple summation the value

L+ nk+2m SH1 S -M—E(a)}cosqu
% 1-k* — 1-k*
- =
-
and the double summation
2k%1n k 2k%In k z h r
. [2p gy BEE 1) + B Eh ] cosh [r,, B4 D 02 5y D)
1 1-k 1-k
f,;; ///‘ mz - x
- n=0 ( - 1) cosh (gzn a)

the values B and g, and h, are the coefficients of the expansions

r,2 I, _ r
@ D - Z B, Co (£, 2)
n=0

and

& 3
; z C2 (gzn a)

n=0

Similar expressions can be obtained for the force, moments and for the
case o = 3/4,

D. Special Case: Cylindrical Container with Circular Cross Section

Let the ratio, k = b/a, of the inner to the outer tank diameter

approach zero and let & be 1, then we obtain the results which are due
to fluid motion in a cylindrical tank with circular cross section. This
represents the container with the side wall in the ¢ = 0 plane from

=0 tor = a. Since we restrict ourselves to vibrations in the direction
f the x=-axis at which the side wall does not disturb the flow field we
btain finally with some limit considerations the velocity potential for
ranslatory excitati9n in the form° (49)

. Iy (e ) cosh [e (- —)]
(r,9,z,t) = iw X eT0E a cos @ @— + 2?;' - 2 }

n—O (e -1) J, (e ) cosh (e -9(—- -1)
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Here the values €, are the roots of the equation
J‘l= (6) =0 n=0,1,2,0..'0
and the natural circular frequency square is

2 _ & h i
we =0 e, tanh (en a) (Figure 5)

where the first values for the e values are eg = 1.84, e€; = 5.33,
€2 = 8.530

As already mentioned, it can be detected that the natural frequency
increases with the square root of the longitudinal acceleration g, and
that it decreases with increasing tank diameter like

————

1/ a

This indicates that the natural frequency of the liquid for large tank
diameters is smaller than for small tank diameters. The frequency ratio

e £ 4 Vfela

changes only considerably for small fluid height h/a < 1, since for
h/a < 1 hyperbolic tangents can be approximated by unity. The free
surface displacement is given by

, J,
W2 x e]_(,ot cos o ) J,ll (e £) (50)
[¢] r . nt a
C (r,CP,t) = {; + 2 w2 ]
-7
8la ael (e2 - 1) Jile)) B - 1)

from which we can conclude that the first term is the displacement with
respect to small exciting frequencies. For this, if one neglects the
terms with w? compared to those with w?® the free fluid surface is a
plane proportional to the form r cos @, With increasing exciting
amplitude x_ the surface displacement is increased, while for increasing
longitudinai acceleration of the container the disturbances of the free

fluid acceleration are slightly decreasing, The fluid force on the
tank wall is:
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Free Fluid Surface Displacement (Magnification Factor)



32

o0 h
. tanh (e_ o)
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Figure 9. Fluid Forces (Magnification Factor)

where the first term is due to the inertial force. The fluid moment
referred to the center of gravity of the undisturbed liquid is for
translational oscillation

L tanh (¢ h) + 1 ( 2 -1
[} na h h
5 ) 1 (e. =) cosh (e_ =)
= mw® ax otut (—+ 2 - L L )
ys = o 4B w2
= - 2 _ _n _
a n=1 € (en 1 (w2 1)

(52)
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Figure 10. Fluid Moments (Magnification Factor)

The first term in the parentheses is due to the moment of lateral dis-

placement of center of gravity if one considers the free fluid surface
as a plane of the form g r cos ¢, It is

h + Io I cos @
xcg ﬁ[ Py “r2 cos @ dr dop dz, which is

2
_.a% tan o . -
Xee = " Gh with go tan o

[}
09 |¥:

Therefore the moment due to this part is

M = - X = -
y "8 cg 4 h
a

33
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Figure 11. Shift of Center of Gravity During Oscillation

The shifting of the center of gravity in vertical direction (2. order
term) need not be considered since all terms of second order originally
have been neglected. Similar results can be obtained for any of the tank
shapes and has been worked out for cylindrical tank with annular ring
cross section [Ref. 1,2] and for a circular cylindrical quarter tank

of which a few results will be given in Figures 12 - 18.

The theory, however, does not yield the answer of the liquid for
large amplitudes which occur near or at resonance. In the vicinity of
the natural frequencies of the liquid ,(especially the lower frequencies),
values appear which represent the important influence on the space vehicle.
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It also gives no answer for the inclusion of mechanical suppression
devices or baffles of one type or another., These baffles or at least
stiffener rings are almost universally employed to reduce the magnitude
of forces and torques from the liquid in the vehicle. This means that,
due to the complexity of the fluid flow behavior, mathematical treatment
is not possible. Recourse must be made to potential theory with smooth
tank walls and experimental investigations from which the damping is
obtained and introduced in an equivalent way into the theoretical results.
This part will be treated in a later report.
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V. CONCLUSION

The natural frequency of a liquid in a cylindrical container with
circular anmnular sector cross sections increases proportionally to the
square root of the longitudinal acceleration. This means that, during
the flight of a space vehicle, which increases its acceleration during
flight time, the natural frequency increases. Only during the burn out
period the natural frequency of the propellant is decreasing again,
since the fluid height influence {tank (¢, h/a)] overcomes the influence
of the acceleration g. If one chooses a larger tank diameter, then the
natural frequency of the propellant is lower due to its being proportional
to 1/+/ a. This indicates, that the natural frequency in large space
vehicles with large tank diameters is very low, thus being closer to
the control frequency. This is a very unfavorable situation, since one
wants the natural frequency of the liquid as far above the control
frequency as possible. An increase in the natural frequency of the
liquid can also be obtained by tank geometry, Subdividing a tank
therefore e.g. into quarter tanks increases the natural frequency due
to the roots of

8, (&) =o.

20

As already mentioned, it could be seen, that for a tank with circular
cross section the roots of A, = J] (e¢) = 0 were e€g = 1.84, ¢, = 5.33,
etc. For a quarter tank arrangement the roots are obtained from

J) (e) = 0 and we obtain epp ® 3.832 , €;0 *~ 3.054, which indicates
that the lowest natural frequency of the liquid is increased by about
a factor of 1.4,

It was seen, that once the velocity potential has been determined,
the pressure and velocity distribution, the free fluid surface displace-
ment, as well as the forces and torques of the liquid could be determined
by differenjations and integrations withrespect to the spacial and time -
coordinates. These results have at the resonance frequencies of thé’
liquid singularities, which can be eliminated by the introduction of
damping in the resonance terms. This will be treated in a later report.
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APPENDIX
. Sbi
A. Roots of Certain Bessel Functions . For the previdus results the roots of
] 1
J.IE_ () Ym_ (¢)
2¢ 20
no(e) = ' 0
LU '
> Ta (e) Yy (k)
20 20

have to be determined for m = 0,1,2,.... and arbitrary 0 < k < 1. For
most of these roots J. McMahon represented asymptotic expansions (Ref. 5).
The smallest root, however, was not known until H. Buchholz pointed out its
existence (Ref, 6). In Ref. 7 D. Kirkham gave the roots of the above
equation in a graphical way for m/2a0 = 0, 1, 2, 3, 4. In the numerical
evaluation of fluid oscillations in containers with an annular circular
cross section, the roots of A; (£) = 0 have to be known for various
diameter ratios k. These roots have been determined numerically and

are given in Table 1., The roots of the equation Jém (e) = 0 which

appear in a cylindrical container of circular quarter cross section
represented in Table 2.

B. Representation of a Function in Bessel~Fourier-Series

The determinant Cm is

20
JE_ (an r) %E_ (Nmn r)
Cm O\mn r) = ,za za
a— 1
20 Jg_ (%mn a) Yﬁ (%mn a)
2a Za
Its derivative is
] 1
| 3y Oy Y Oy O
C$ (xmn r) = 20 20
—— 1 ]
% Jm_ N, &) Ym— A\p &
20 ' 20

which vanishes for r = a and r = b that is !
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c A\, =¢ O, b =0

for r = a the derivative of Cm
20

vanishes identically,while for r = b the roots (gmn)
vanish. !

(Kmn a) make it

A function f (r) which is piecewise regular in the interval
b<rX<a,

satisfigs the Dirichlet condition,can be expanded into a Bessel-Fourier
series of the form /

o0

£ (r) = z bn(ufl) Ct_x_)__ Ny © (m =0,1,2,..... )
=0 20

the unknown coefficients of the expansion will be determined by
multiplying both- sides of the equation with r c, ()mp r)

20,

and integrating from r = b to r = a. Here A _ and an are different’

roots of the determinant Ah = 0. It is
2a
}: bmnk/; T CE_ ()mn r) QE_ (xmp r) dr =\/; r £ (r) CE_ ()mp r) dr
n=0 20 2 2a

With the integral of Lommel we obtain

dc?_ (7\mp )
02, AZ,) f Oy Oy ™ Gy Oy m)dr=x (G Oy 0 = dr
20 20 20
chl_ Ny T
- Cﬂ_ ()\mp r) Zo i } (n #p)
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and the integral on the left hand side is

[ty Opa® 6y Oy 0 ar=—F—— 0y, ¢, O

mn 2 _ a2 mp m_ mn
(xmn 7\mp) 2

8l
Sl

| (F)
¢! O s AL G Oy T CL D) (e Fw)

mp mn m mp mn

2a 2q 20
The integral is zero, if one of the following conditions is satisfied,

1. ¢ (A_a)=Cc (AN_a =c¢C_ (\_Db)

m mn m mp m mn m mp

I
(@]
7~
>
o
~—

]
o

(G)
3. n_C (an a) C% (A, a)=AN_C O\ a) Cé (%mn a) and

oty

20, 2¢ 20 20

20 20 201 20

In the here treated C& cases of fluid oscillations the second boundary
20

condition is satisfied, since %mn a and an b are roots of the equation

A =0,
m_
20
Those terms for which an # xm vanish and one obtains for the
coefficients P

a
. r f(r) Cm (%mn r) dr

b (B _ 20,

mn a
2
bL/i by CE_ (%mn r).dr
2¢

(H)
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For p = n the equation (F) will be an indeterminate form, which will be
treated with Taylor expansion or the rule of L'Hospital, and is with

the Bessel differential equation for Cm

2
c2 (A )dr=ﬁ(cz (A 1) [1-——i——l+c'2(x ) ()
rg_ mn © 2 m_ ' mn 4o N2 12 m_ mnr}
2a 2 mn 20

We thus obtain in the interval b<r < a

aZ 2 m? 12
e Oy, Q-——=)+C ) )
e 4o N2 a® —
a a mn 200
2 -
j; T Cm (')\mn r) dr =
-2— b2 2
“ -5 162 OB - =) + G F (A, D]
25 b NS PE 35

Q)

which is due to the boundary conditions

‘ a r _ _a® 4 - m? mZ
‘ ﬁ rc2 (g ) dr= [ (62 - =) - 2 (kg ) (k%2 -4;2-)]

m 2 n2 2 mn o
20 2§mn E‘mn 2q
-
(X)
Here C (¢ = is tﬁé Wronskian determinant. The coefficient b(f)
m_ -mn) wE mn
20 o
of the Bessel*Fourier expansion can be determined from
_——”‘-
a .
202 | rf()c (¢ D) dr
mn 4, m_ °mn a
() _ 20
bmn (L)
4 m? me
282 2 _ B, _ 2 2,2 _ DL
I ey D G G (T )]
o 7mn 20

~ | a
The problem that remains is the solution of thef r f(r) C (¢ £) dr.
b m_ Cmn a

e

20
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Most of the integrals in the previous treatment are of the form

fzK Cv (z) dz .

ihese can be obtained with the help of the Lommel function SK (z) or
by integration of the series expansion of the integrals. v

b/\zK C (z) dz = Y; (gmn)k/ﬁzK"Jm (z) dz - J; (gmn)\jsz'Ym (z) dz

20 2a 200 2a

Sk

()

Integrating the first integral term by term and collecting terms of

Jv +ou 417 one obtains
K+K+1
KI,' (K+V+1) (v+2p+l) T ( 2 w
K 2
= — J
JPZ Iy (2) dz r (V—K+l) }: r (v+K+3 + 1) v+2u+l (™)
2 n=0 2 "

where Re (K+u+l) must be > 0 if one integrates from z = 0 on.

The second integral is obtained by term wise integration of the
series expansion of the Bessel function of second kind.

It is for (E% integer)

2-.1 m z.2u - ==
-1, m . E -
X ZK+1 2 (206 - (2) 20
L/\z Ym (z) dz) = - - }ﬂ : - +
2—-0[ p.:o u.‘(K+2p.-'éTx+l)
m
— + 2u
0 _ n .z 2
25 o DTG z 1
{In 5 = 5 ¥ (utl) -
§ p ! CE=+ ) G4k 20+ 1) 2 2
- p=0 200 20
m
) : — + 2u
0 1yH (Ey20
ZZK+1 ( 1) (2)

1 m
-3V (wtgz+ D) -
o = u:(m?-a+u) PGtk +2u+ 1P

(0)
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’,

where { (z) represents the logarithmic derivative of the Gamma function

_4a (nT (2)) _ _ _ 1
v (z) = dz = -7+ (=D }: (ML) (2= (®)
‘ A=0

and y is the Euler constant. With these results we obtain the integrals
as mentioned in the text.

2 ' Gg
k/; r2 C. (gmn ;) dr = a3 Ny (Emn)
35 4
a , ‘ 21;(—11
L = 52
\]; t C2m-1 (gmn a) dr = a= N, (E(Zm-l),n) @
2c
a (E—
T _ 2
L/; O R S O
20

Similar results can be obtained for the integrals in roll oscillation.
It may be mentioned here that some of the integrals in which K is
1 -vor v+ 1 can be obtained from the recursion formulas

~ ~

L/\zl-v CV (z) dz - zl_v Cvll (z) =0 zl-v C; (z) - z-v v CV.(Z)

v+l v+l sV v+l
JFz Cv (z) dz = z Cv+l (z) = vz Qv (z) z Cv (z)

Integrals which contain in the function £(r) a ln (r/a) can be
determined in the same way as previous if one performs first an
integration by parts.

C. Limit Considerations for k —» 0

The previous results can be applied for cylindrical tanks with
circular cross section by letting k —» 0. The zeros of the determinant

o, (v =5
I, (&) Y‘{ (&)

B 8= g ke v, ae) |0
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approaches for k — 0 the value Jé . This is due to the fact that
2a _
v
3, (&) = 5—
2 T (V+1)

for small x and

V.
y, (x) » 2L

v \Y
£9:4

for v > 0 and small x. Instead of the value

T
Cp Con )
20
r
in a ring sector tank the values of Jm (Emn ;) has to be taken for a
20
container of circular sector cross section.

With (N) we obtain the values Ly, L;, Lo for the sector tank.

o= =
20 _ 2 m_
Lo . (emn) T e Z J2p, +=+1 (emn) (Re 200 >-D
mn 2¢
p=0
2m-1 ) 2m-1
L(Za)(e y = —2m-l 5o *2+D 3 (€omo1 )
1 mn’ 40 € / 2m-1 2m-1 2m-1 m=1,n
2m-1,n 1=0 (—Zar + ) ( Ty +p+ 1) 20 + 2p +1
G= r &+ o B+ )T -
201 P g T2 2~ M 20 "M "2 (€rr)
L2 (e ) = ~ . - 5 J mn
Can T Gq - E) p=0 T (Z& TRt ED 20 2+l

The other values can be obtained in a similar way.
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